Shortness Coefficient of Cyclically 4-Edge-Connected Cubic Graphs

Nico Van Cleemput (Ghent University)

The shortness coefficient of a class of graphs is the limit of the infimum over all graphs in the class of the ratio of the length of the longest cycle in such a graph and the number of vertices in that graph.

Grünbaum and Malkevitch proved that the shortness coefficient of cyclically 4 -edge-connected cubic planar graphs is at most $\frac{76}{77}$. Recently, this was improved to $\frac{359}{366}\left(<\frac{52}{53}\right)$ and the question was raised whether this can be strengthened to $\frac{41}{42}$, a natural bound inferred from one of the FaulknerYounger graphs. We prove that the shortness coefficient of cyclically 4-edgeconnected cubic planar graphs is at most $\frac{37}{38}$. We also show that $\frac{45}{46}$ is an upper bound for the shortness coefficient of cyclically 4-edge-connected cubic graphs that are (i) planar with face lengths bounded above by some constant larger than 22 , or (ii) of genus g for any prescribed $g \geq 0$. Finally, for the shortness coefficient of general cyclically 4 -edge-connected cubic graphs we prove a theorem that implies the recently given upper bound $\frac{7}{8}$ of Máčajová and Mazák.

This is joint work with On-Hei S. Lo, Jens M. Schmidt, and Carol T. Zamfirescu.

Nico Van Cleemput
Department Applied Mathematics, Computer
Science and Statistics
Ghent University
Krijgslaan 281-S9
9000 - Ghent, Belgium
nico.vancleemput@gmail.com

