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Plane triangulation

A (plane) triangulation is a plane graph in which each face is a
triangle.
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Hamiltonian cycle

A hamiltonian cycle C in a graph G = (V ,E) is a spanning
subgraph of G which is isomorphic to a cycle.
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Hamiltonian cycle

C: set of all hamiltonian cycles in graph G
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Separating triangle

A separating triangle S in a triangulation G is a subgraph of G
which is isomorphic to C3 such that G−S has two components.
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A separating triangle S in a triangulation G is a subgraph of G
which is isomorphic to C3 such G − S has two components.
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4-connected triangulation

A triangulation on n > 4 vertices is 4-connected if and only if it
contains no separating triangles.
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Lower bound on number of hamiltonian cycles

Theorem (Whitney, 1931)

Every 4-connected triangulation is hamiltonian (i.e., contains at
least one hamiltonian cycle).

Theorem (Jackson and Yu, 2002 (reformulated))

Every triangulation with at most 3 separating triangles is
hamiltonian (i.e., contains at least one hamiltonian cycle).
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Lower bound on number of hamiltonian cycles

Theorem (Kratochvíl and Zeps, 1988)

Every hamiltonian triangulation on at least 5 vertices contains
at least four hamiltonian cycles.

Theorem (Hakimi, Schmeichel and Thomassen, 1979)

Every 4-connected triangulation on n vertices contains at least
n

log2 n hamiltonian cycles.
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Lower bound on number of hamiltonian cycles

Conjecture (Hakimi, Schmeichel and Thomassen, 1979)

Every 4-connected triangulation on n vertices contains at least
2(n − 2)(n − 4) hamiltonian cycles.
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Proof by Hakimi, Schmeichel and Thomassen
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Proof by Hakimi, Schmeichel and Thomassen
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Proof by Hakimi, Schmeichel and Thomassen

For each edge vw in G: pick hamiltonian cycle containing
xvwy .

⇒ ≤ 3n − 6 hamiltonian cycles.

Each hamiltonian cycle occurs at most α times.

⇒ |C| ≥ 3n−6
α
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Proof by Hakimi, Schmeichel and Thomassen

Let C be hamiltonian cycle that occurs α times.

x

v w

y

At least α3 zigzags intersect in at most one vertex.
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Proof by Hakimi, Schmeichel and Thomassen

New hamiltonian cycle for each independent zigzag switch.

⇒ |C| ≥ 2
α
3
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Proof by Hakimi, Schmeichel and Thomassen

log2 |C| ≥ α
3 ≥

n−2
|C|

⇓

|C| log2 |C| ≥ n − 2

⇓

|C| > n
log2 n
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Counting base (S, r) for C ′ in G

General technique for finding a lower bound for the size of an
arbitrary set C′ ⊆ C of hamiltonian cycles in a given graph G.
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Counting base (S, r) for C ′ in G

S ⊆ {subgraphs of G}
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Counting base (S, r) for C ′ in G

S ⊆ {subgraphs of G}
r : S → {subgraphs of G}

r−→
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Counting base (S, r) for C ′ in G

S ⊆ {subgraphs of G}
r : S → {subgraphs of G}
C′ ⊆ C
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Counting base (S, r) for C ′ in G

1 Each S ∈ S must be contained in at least one C ∈ C′.

2 For each S ∈ S we have that S * r(S).
3 For each S ∈ S and C ∈ C′ with S ⊆ C we have that

(C\S) ∪ r(S) ∈ C′.
4 For two different S1,S2 ∈ S and for any C ∈ C′ containing

both subgraphs we have that
(C\S1) ∪ r(S1) 6= (C\S2) ∪ r(S2).
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Counting base (S, r) for C ′ in G

1 Each S ∈ S must be contained in at least one C ∈ C′.
2 For each S ∈ S we have that S * r(S).
3 For each S ∈ S and C ∈ C′ with S ⊆ C we have that

(C\S) ∪ r(S) ∈ C′.
4 For two different S1,S2 ∈ S and for any C ∈ C′ containing

both subgraphs we have that
(C\S1) ∪ r(S1) 6= (C\S2) ∪ r(S2).

S1 ⊆ C S2 ⊆ C
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Counting base (S, r) for C ′ in G

1 Each S ∈ S must be contained in at least one C ∈ C′.
2 For each S ∈ S we have that S * r(S).
3 For each S ∈ S and C ∈ C′ with S ⊆ C we have that

(C\S) ∪ r(S) ∈ C′.
4 For two different S1,S2 ∈ S and for any C ∈ C′ containing

both subgraphs we have that
(C\S1) ∪ r(S1) 6= (C\S2) ∪ r(S2).

(C\S1) ∪ r(S1) (C\S2) ∪ r(S2)
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Overlap oS(C,X ) and maximum overlap OS(C ′, r)

S̄ = S ∪ {r(S)|S ∈ S}

For each X ∈ S̄ and each C ∈ C′ with X ⊆ C:

oS(C,X ) = |{S ∈ S | X ∩ S 6= ∅ and S ⊆ C}|

X ⊆ C S ⊆ C

OS(C′, r) = max{oS(C,X ) | C ∈ C′,X ∈ S̄ : X ⊆ C}
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Theorem (Brinkmann, Souffriau, NVC, 2014)

Given a graph G, a set C′ ⊆ C, and a nonempty counting base
(S, r) for C′, then

|C′| ≥ |S|
OS(C′, r)

.
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For S ∈ S,let CS denote the set of all C ∈ C′ saturating S

For C ∈ C′, let m(C) denote the number of S ∈ S saturated by
C.
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For S ∈ S and C ∈ CS, all S′ saturated by (C\S) ∪ r(S) but not
by C must contain an edge of r(S)

C (C\S) ∪ r(S)
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number of S′ saturated by (C\S) ∪ r(S) but not by C . . .

. . . is at most oS((C\S) ∪ r(S), r(S))

. . . is at most OS(C′, r)
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number of S′ saturated by (C\S) ∪ r(S) but not by C is at
most OS(C′, r)

S is not saturated by (C\S) ∪ r(S)

⇒ m((C\S) ∪ r(S)) ≤ m(C) + OS(C′, r)− 1
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|C′|

=
∑
C∈C′

1 ≥
∑

C∈C′,m(C)>0

m(C)

m(C)
=

∑
S∈S

∑
C∈CS

1
m(C)

Prove that for each S ∈ S we have
∑

C∈CS

1
m(C) ≥

1
OS(C′,r)

|C′| ≥
∑
S∈S

∑
C∈CS

1
m(C)

≥
∑
S∈S

1
OS(C′, r)

=
|S|

OS(C′, r)
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Choose C′ ∈ CS such that m(C′) > OS(C′, r).

There are at least m(C′)−OS(C′, r) subgraphs in S saturated
by C′ that do not share an edge with S

For each of these S′ we have that (C′\S′) ∪ r(S′) still saturates
S, and all these hamiltonian cycles are distinct and different
from C′
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∑
C∈CS

1
m(C)

≥ 1
m(C′)

+
∑
S′

1
m((C′\S′) ∪ r(S′))

≥ 1
m(C′)

+
∑
S′

1
m(C′) + OS(C′, r)− 1

≥ 1
m(C′)

+
m(C′)−OS(C′, r)

m(C′) + OS(C′, r)− 1

≥ m(C′)−OS(C′, r) + 1
m(C′) + OS(C′, r)− 1
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The function m(C′)−OS(C′,r)+1
m(C′)+OS(C′,r)−1 is increasing in m(C′)

It has its minimum in OS(C′, r) + 1

∑
C∈CS

1
m(C)

≥ m(C′)−OS(C′, r) + 1
m(C′) + OS(C′, r)− 1

≥ 2
2OS(C′, r)

=
1

OS(C′, r)
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It has its minimum in OS(C′, r) + 1
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Zigzags

Let G be a 4-connected triangulation
Let S be the set of all zigzags (|S| = 6n − 12)
r switches zigzag to mirror image (S̄ = S)
C′ = C
oS(C,X ) ≤ 5, so OS(C, r) ≤ 5

⇒ |C| ≥ 6n−12
OS(C,r) ≥

6n−12
5
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Root path and inverse root path

Theorem (Brinkmann, Souffriau, NVC, 2014)

Every 4-connected triangulation on n vertices has 12(n − 2)
root paths and inverse root paths.
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Root path and inverse root path

Let G be a 4-connected triangulation
Let S be the set of all root paths and inverse root paths
(|S| = 12(n − 2))
r switches root path to inverse root path on same vertices
(and vice versa) (S̄ = S)
C′ = C

This gives a counting base (S, r) for C.
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Theorem (Brinkmann, Souffriau, NVC, 2014)

For each 4-connected triangulation G we have that OS(C, r) ≤ 5
with S the set of all root and inverse root paths in G.
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Theorem (Brinkmann, Souffriau, NVC, 2014)

Every 4-connected triangulation on n vertices has at least
12
5 (n − 2) hamiltonian cycles.
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Maximum overlap of a subset Si of S

Let (S, r) be a counting base for C′, and let Si be a subset of S:

OS|Si
(C′, r) = max{oS(C,S) | C ∈ C′,S ∈ Si : S ⊆ C}
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Theorem (Brinkmann, Cuvelier, NVC, 2015)

Given a graph G, a set C′ ⊆ C, a nonempty counting base (S, r)
for C′, and a partition S1,S2, . . . ,Sk of S, then

|C′| ≥
k∑

i=1

|Si |
2

OS(C′, r) + OS|Si
(C′, r)

.
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Theorem (Brinkmann, Cuvelier, NVC, 2015)

Every 4-connected triangulation on n vertices has at least
161
60 (n − 2) hamiltonian cycles.
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Hourglasses
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Hourglasses

v-edges

base edge
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Inverse hourglass
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Sparse set of hourglasses for a triangle T

Definition

A set H of hourglasses is a sparse set for a triangle T if
no two elements H 6= H ′ have the same set of v-edges,
and
for each H ∈ H: if T is not one of the two triangles of H,
then H contains no edge of T as v-edge or base edge.

Lemma

A 4-connected triangulation with n vertices contains a sparse
set of hourglasses of size 6n − 21 for each facial triangle.
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Set of hamiltonian cycles sharing an edge with a face

CT : set of all hamiltonian cycles in graph G that share an edge
with the face T .

Let G be a 4-connected triangulation
Let T be a face of G
Let H be a sparse set of hourglasses for T
r maps an hourglass to its inverse

This gives a counting base (H, r) for CT .
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Set of hamiltonian cycles sharing an edge with a face

The overlap for hourglasses is at most 4, so. . .

⇒ |CT | ≥ 6n−21
OH(CT ,r)

≥ 6n−21
4
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One separating triangle

Theorem (Brinkmann, Souffriau, NVC, 2014)

Every 3-connected triangulation on n vertices with exactly one
separating triangle has at least 6n−27

4 hamiltonian cycles.
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Go Gi

With Go at least as many vertices as Gi .
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Both Go and Gi are K4.
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Both Go and Gi are K4.
Gi is K4
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Both Go and Gi are K4.
Gi is K4

Go is 4-connected and has n − 1 vertices
Go has at least 6(n−1)−21

4 = 6n−27
4 hamiltonian cycles

sharing an edge with the separating triangle
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Both Go and Gi are K4.
Gi is K4

Gi is 4-connected
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Both Go and Gi are K4.
Gi is K4

Gi is 4-connected
Go is 4-connected and has at least n+3

2 vertices

Go has at least 6 n+3
2 −21

4 = 3n−12
4 hamiltonian cycles sharing

an edge with the separating triangle
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Both Go and Gi are K4.
Gi is K4

Gi is 4-connected
Go is 4-connected and has at least n+3

2 vertices

Go has at least 6 n+3
2 −21

4 = 3n−12
4 hamiltonian cycles sharing

an edge with the separating triangle
original triangulation has at least 2 3n−12

4 = 6n−24
4 > 6n−27

4
hamiltonian cycles
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Theorem (Brinkmann, Cuvelier, NVC, 2015)

Every 4-connected triangulation on n vertices has at least
161
60 (n − 2) hamiltonian cycles.

Theorem (Brinkmann, Souffriau, NVC, 2014)

Every 3-connected triangulation on n vertices with exactly one
separating triangle has at least 6n−27

4 hamiltonian cycles.
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Computational results

Conjectured bound for 4-connected triangulations by Hakimi,
Schmeichel and Thomassen verified up to 25 vertices.
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Computational results

For 6 separating triangles it is known that there exist
non-hamiltonian 3-connected triangulations.

Minimum number of hamiltonian cycles for 3-connected
triangulations with at most 5 separating triangles computed up
to 23 vertices.
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Computational results

1 2 3 4 5

5 6 - - - -
6 - 10 - - -
7 24 - 12 - -
8 42 26 - 6 -
9 64 36 24 - 8

10 90 46 33 12 -
11 120 56 41 14 12
12 154 66 49 14 10
13 192 76 57 14 10
14 234 86 65 14 10
15 280 96 73 14 10
16 330 106 81 14 10
17 384 116 89 14 10
18 442 126 97 14 10
19 504 136 105 14 10
20 570 146 113 14 10
21 640 156 121 14 10
22 714 166 129 14 10
23 792 176 137 14 10
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Computational results

1 2 3 4 5

For n ≥ 12 2(n − 1)(n − 5) 10n − 54 8n − 47 14 10
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Extremal graphs
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Extremal graphs
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Summary

Lower bounds for the number of hamiltonian cycles in
triangulations with few separating triangles

# sep. triangle Old bound New bound Conjectured bound

0 n
log2 n

161
60 (n − 2) 2(n − 2)(n − 4)

1 4 6n−27
4 2(n − 1)(n − 5)

2 4 [4,10n − 54] 10n − 54

3 4 [4,8n − 47] 8n − 47

4 0 [0,14] 14

5 0 [0,10] 10
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4-connected triangulations

Better than constant bounds in case of two separating
triangles
Better than linear bounds in case of zero or one separating
triangle
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Other graphs

Counting base is not specific to triangulations, but no other
examples are known!
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