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Introduction Motivation Bounds Future Definitions

Plane triangulation

A (plane) triangulation is a plane graph in which each face is a
triangle.
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Hamiltonian cycle

A hamiltonian cycle C in a graph G = (V ,E) is a spanning
subgraph of G which is isomorphic to a cycle.
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4-connected triangulations

Theorem (Whitney, 1931)

Every 4-connected triangulation is hamiltonian.
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Type-i triangle

A type-i triangle (i ∈ {0,1,2}) in a hamiltonian triangulation G
containing a hamiltonian cycle C is a facial triangle of G
containing i edges of C.

type-0 trianglestype-1 trianglestype-2 triangles
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Type-i triangle

A type-i triangle (i ∈ {0,1,2}) in a hamiltonian triangulation G
containing a hamiltonian cycle C is a facial triangle of G containing i
edges of C.

ti(G,C) = |{T ,T is a type-i triangle in G for C}|
If G and C are clear from the context we just write ti .

t0(G) = min{ti(G,C),C is hamiltonian cycle in G}

t0(t) = max{ti(G),G is 4-connected triangulation with t triangles}
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(i , j)-pairs

Let G be a plane triangulation and let C be a hamiltonian cycle in G.

An (i , j)-pair (i , j ∈ {1,2}) is a pair of adjacent triangles consisting of a
type-i triangle and a type-j triangle such that the shared edge is
contained in C.
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2-walk

A 2-walk is a spanning closed walk such that each vertex is
visited at most twice.

Theorem (Gao and Richter, 1994)

Every 3-connected plane graph contains a 2-walk.
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3-tree

A 3-tree is a spanning tree with maximum degree at most 3.
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2-walk vs. 3-tree

Every graph that contains a 2-walk also contains a 3-tree.
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3-tree

Theorem (Nakamoto, Oda, and Ota, 2008)

Every 3-connected plane graph on n ≥ 7 vertices contains a
3-tree with at most n−7

3 vertices of degree 3.
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Back to 2-walks

Is there a counterpart of this theorem for 2-walks?

Does each 3-connected plane graph contain a 2-walk such that
the number of vertices visited twice is at most n

3 + constant?

Does each 3-connected plane triangulation contain such a
2-walk?
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Few type-0 triangles
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Few type-0 triangles

4-connected parts
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Few type-0 triangles

Take a hamiltonian cycle in each 4-connected part. If an edge
of a separating triangle is contained in such a hamiltonian
cycle, then we can detour it to the other side of the hamiltonian
cycle ‘without creating a vertex visited twice’.

This is not an exact correspondence, but only an
approximation, since specific configurations might still lead to
vertices visited twice.
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Domination in triangulations

Theorem (Matheson and Tarjan, 1996)

The domination number of any plane triangulation on n ≥ 3
vertices is at most n

3 .

Conjecture (Matheson and Tarjan, 1996)

The domination number of any plane triangulation on n ≥ 4
vertices is at most n

4 .
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Domination in 4-connected triangulations

Theorem (Plummer, Ye, and Zha, 2016)

The domination number of a 4-connected plane triangulation on
n ≥ 4 vertices is at most 5n

16 .

Proof based on hamiltonian cycle with a small number of type-2
triangles.

More precise: if a plane triangulation G contains a hamiltonian
cycle with few triangles of type-2 on one side, then G has a
‘small’ dominating set.
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Which type?

Let T be a subcubic tree with V vertices and E edges.
Denote by Vi the number of vertices of degree i .

Counting edges around each vertex gives

3V3 + 2V2 + V1 = 2E .

Number of edges is one less than number of vertices, so

V3 + V2 + V1 − 1 = E .

Combined this gives
V1 = V3 + 2.
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Which type?

Inner dual of either side of a hamiltonian cycle in a plane
triangulation is a subcubic tree.
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Which type?

Type-i triangles correspond to vertices of degree 3− i in these
trees.
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Which type?

Using V1 = V3 + 2, we find

t2 = t0 + 4.

Combining this with t = t0 + t1 + t2, we find

t1 = t − 2t0 − 4.

The following are all equivalent:
finding the minimal value for t0
finding the maximal value for t1
finding the minimal value for t2
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Neighbourhoods of (2,2)-pairs
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Only certain neighbourhoods

Lemma

Let G be a 4-connected plane triangulation. Let C be a
hamiltonian cycle in G such that C has the smallest number of
type-0 triangles among all hamiltonian cycles of G. Then C has
no neighbourhood of type D, E, or F.
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Neighbourhoods of (2,2)-pairs
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Z-switching

Whenever we have a (2,2)-pair, we can perform a Z-switching.
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Proof of lemma: no D
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Proof of lemma: no F
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Proof of lemma: E?
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Proof of lemma: EE-neighbourhoods
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Proof of lemma: moving along the cycle
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Proof of lemma: only one EE-triangulation
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(1,2)-pairs

Corollary

Let G be a 4-connected plane triangulation. Let C be a
hamiltonian cycle in G such that C has the smallest number of
type-0 triangles among all hamiltonian cycles of G. Then each
type-2 triangle for C is contained in at least one (1,2)-pair.

This implies: there are at least as many type-1 triangles as
there are type-2 triangles.
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At least one non-conformist edge

Lemma

Let G be a 4-connected plane triangulation. Let C be a
hamiltonian cycle in G such that C has the smallest number of
type-0 triangles among all hamiltonian cycles of G. Then C
contains at least one edge that is not incident to a type-2
triangle contained in a (2,2)-pair.
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Proof of lemma: a chain of (2,2)-pairs

Assume each edge of C is incident to a type-2 triangle
contained in a (2,2)-pair.
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Proof of lemma: position of chord
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Proof of lemma: hamiltonian cycle near chord triangle
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Proof of lemma: existence of type-1 chord triangle
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Proof of lemma: rerouting the hamiltonian cycle
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Proof of lemma: some more detours
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An upper bound for t0

Each type-2 triangle is contained in at least one (1,2)-pair.
There is at least one of the following:

a type-2 triangle contained in two (1,2)-pairs, or
a (1,1)-pair.

This gives us
t2 ≤ t1 − 1
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An upper bound for t0

t = t0 + t1 + t2
= t0 + t1 + t0 + 4
≥ t0 + t0 + 5 + t0 + 4

This gives us

t0 ≤
t
3
− 3.

Brinkmann, Ozeki, Van Cleemput Type-0 triangles

Introduction Motivation Bounds Future Which type? Upper bound Lower bound The gap

Lunes

N

S

EW

N

S

WE WE WE WE WE WE WE

Brinkmann, Ozeki, Van Cleemput Type-0 triangles

http://caagt.ugent.be
http://caagt.ugent.be
http://caagt.ugent.be


Introduction Motivation Bounds Future Which type? Upper bound Lower bound The gap

Hamiltonian cycle through lune

If there are k lunes, then at least k − 8 lunes contain two type-0
triangles.

2 2

1 0

0 1
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A graph with many type-0 triangles

Gk contains k of these lunes.

t0(Gk ) ≥ 2k − 16 =
6k − 48

3
=

t
3
− 16

Lower bound t0(Gk ) is asymptotically equal to upper bound.
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Visiting the poles
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A lower bound

t0(Gk ,C) = 2(k − 3) =
6k − 18

3
=

t
3
− 6

C is actually a hamiltonian cycle with the minimum number of
type-0 triangles.

t0(Gk ) =
t
3
− 6
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The gap

t
3
− 6

t
3
− 6 ≤ t0 ≤

t
3
− 3
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Which side?
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5-connected case

There is a family of 5-connected triangulations with

t0 =
t
6
− 8
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5-connected case
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5-connected case

. . .. . .
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5-connected case
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5-connected case

In general at least two type-0 triangles per building block, so
this gives

t0 =
t
6
− 8

However, . . .
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5-connected case
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5-connected case

Conjecture

There exists a family of 5-connected triangulations such that
each hamiltonian cycle has a linear number of type-0 triangles
on either side.
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