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Triangulation

A triangulation is a plane graph in which each face is a triangle.
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Hamiltonian cycle

A hamiltonian cycle in G(V ,E) is a subgraph of G(V ,E) which
is isomorphic to C|V |.

A graph is hamiltonian if it contains a hamiltonian cycle.
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Separating triangles

A separating triangle S in a triangulation T is a subgraph of T
such that S is isomorphic to C3 and T −S has two components.
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4-connected triangulations

A triangulation is 4-connected if and only if it contains no
separating triangles.
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Whitney

Theorem (Whitney, 1931)

Each triangulation without separating triangles is hamiltonian.
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Splitting triangulations

G. Brinkmann, J. Souffriau, Nico Van Cleemput Hamiltonian cycles in plane triangulations

http://caagt.ugent.be


Introduction Hamiltonicity Hamiltonian-connectedness Definitions Decomposition Constructions Toughness

Recursively splitting triangulations

4-connected parts
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Decomposition tree

Vertices: 4-connected parts
Edges: separating triangles
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Jackson and Yu

Theorem (Jackson and Yu, 2002)

A triangulation with a decomposition tree with maximum degree
3 is hamiltonian.
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Jackson and Yu

There exists a non-hamiltonian triangulation with a
decomposition tree with maximum degree 4.
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Question

Can the result of Jackson and Yu be improved?

Which trees can arise as decomposition trees of
non-hamiltonian triangulations?
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Subdividing a face with a graph
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Subdividing a face with a graph
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Subdividing a non-hamiltonian triangulation

Lemma

When a non-hamiltonian triangulation is subdivided, then the
resulting graph is also non-hamiltonian.
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Toughness

A graph is 1-tough if it cannot be split into k components by
removing less than k vertices.
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Toughness

A hamiltonian graph is 1-tough.
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Creating a non-hamiltonian plane graph

Lemma

When in a plane graph with more faces than vertices each face
is subdivided, then the resulting plane graph is non-hamiltonian.

The subdivided graph is not 1-tough.
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Decomposition trees with ∆ ≥ 6

Theorem

For each tree D with ∆(D) ≥ 6, there exists a non-hamiltonian
triangulation T , such that D is the decomposition tree of T .

Constructive proof.
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Assume ∆(D) = 6.

D1 D2 D3 D4 D5 D6

Choose triangulation Ti with decomposition tree Di (1 ≤ i ≤ 6)
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T1

T2

T3

T4

T5T6

A non-hamiltonian triangulation with D as decomposition tree.
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∆(D) > 6

· · ·
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Remaining cases

∆ : 0 1 2 3 4 5 6 7 . . .
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Remaining cases

∆ : 0 1 2 3 4 5 6 7 . . .

Not the decomposition
tree of non-hamiltonian
triangulation
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Remaining cases

∆ : 0 1 2 3 4 5 6 7 . . .

Not the decomposition
tree of non-hamiltonian
triangulation

Possibly the decomposition
tree of non-hamiltonian tri-
angulation

G. Brinkmann, J. Souffriau, Nico Van Cleemput Hamiltonian cycles in plane triangulations



Introduction Hamiltonicity Hamiltonian-connectedness ∆ ≥ 6 Multiple degrees > 3 One vertex of degree 4 or 5

Remaining cases

∆ : 0 1 2 3 4 5 6 7 . . .

Not the decomposition
tree of non-hamiltonian
triangulation

Possibly the decomposition
tree of non-hamiltonian tri-
angulation

?
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Multiple degrees > 3

Theorem

For each tree D with at least two vertices with degree > 3,
there exists a non-hamiltonian triangulation T , such that D is
the decomposition tree of T .
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red vertices: 5 + (k − 1) + (5− 3) = 6 + k
components: 4 + (k − 1) + 4 = 7 + k
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Remaining cases: trees with one vertex of degree 4 or 5 and all
other degrees at most 3.
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One vertex of degree 4 or 5

Theorem

Let T be a triangulation with decomposition tree D with only
one vertex of degree 4 or 5 and all other vertices of degree at
most 3. Then T is 1-tough.
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Simplifying things

Theorem

For each k ≥ 4. Let D be a tree with one vertex of degree k
and all other vertices of degree ≤ 3.
There exists a non-hamiltonian triangulation with D as
decomposition tree if and only if there exists a non-hamiltonian
triangulation with K1,k as decomposition tree.
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Simplifying things (more)

Theorem

For each k ≥ 4. If there exists a non-hamiltonian triangulation
with K1,k as decomposition tree, then there exists a
non-hamiltonian triangulation with K1,k as decomposition tree
such that the leaves correspond to K4’s.
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Specialised search

Specialised programs to search for non-hamiltonian
triangulations with K1,4 or K1,5 as decomposition tree.
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Extended outerplanar discs

Outerplanar disc of a triangulation T
vertex induced subgraph of T which is an outerplanar
triangulation of the disc with at least 3 vertices

Leaf of an outerplanar disc O
vertex which only has two neighbours in O, together with those
two neighbours

Extended outerplanar disc of a triangulation T
outerplanar disc of T together with a triangle t not belonging to
O, but sharing an edge with O

Leaf of an extended outerplanar disc O
Leaf of the outerplanar disc which contains a vertex of degree 2
in O which does not belong to t
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Extended outerplanar discs
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Extended outerplanar discs
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Extended outerplanar discs

Theorem

Let T be a 4-connected triangulation. Let t1, t2, . . . tk (with
k ≥ 4) be distinct triangles in T such that there is an extended
outerplanar disc O with extension t1 containing t2, . . . , tk−2 as
leaves and with tk−1, tk not in O.
Then there exists a hamiltonian cycle C of T and edges
e1 ∈ E(t1), . . . ,ek ∈ E(tk ) that are pairwise distinct and
contained in E(C).

G. Brinkmann, J. Souffriau, Nico Van Cleemput Hamiltonian cycles in plane triangulations



Introduction Hamiltonicity Hamiltonian-connectedness ∆ ≥ 6 Multiple degrees > 3 One vertex of degree 4 or 5

Extended outerplanar discs

Corollary

Let T be a 4-connected plane triangulation, O an extended
outerplanar disc and t1, t2, t3, t4 distinct triangles in G.
If at least two of t1, t2, t3, t4 are contained in O then there exists
a hamiltonian cycle C of T and edges e1 ∈ E(t1), . . . ,e4 ∈ E(t4)
that are pairwise distinct and contained in E(C).

Corollary

Let T be a 4-connected plane triangulation. Let t1, t2, t3, t4 be
distinct triangles in G such that (at least) two of them share a
vertex.
Then there exists a hamiltonian cycle C of T and edges
e1 ∈ E(t1), . . . ,e4 ∈ E(t4) that are pairwise distinct and
contained in E(C).
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Results

All triangulations on at most 31 vertices with K1,4 as
decomposition tree are hamiltonian.

All triangulations on at most 27 vertices with K1,5 as
decomposition tree are hamiltonian.
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Results

V F 4-connected
triangulations

6 8 1
7 10 1
8 12 2
9 14 4

10 16 10
11 18 25
12 20 87
13 22 313
14 24 1357
15 26 6244
16 28 30 926
17 30 158 428
18 32 836 749
19 34 4 504 607
20 36 24 649 284
21 38 136 610 879
22 40 765 598 927
23 42 4 332 047 595
24 44 24 724 362 117
25 46 142 205 424 580
26 48 823 687 567 019
27 50 4 801 749 063 379
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... and now?

Prove that for each 4-tuple of vertex-disjoint triangles in a
4-connected triangulation there exists a hamiltonian cycle that

shares an edge with each of the triangles.

or

Find a counterexample.
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... and now?

Prove that for each 5-tuple of triangles T1,T2,T3,T4,T5 in a
4-connected triangulation there exists a hamiltonian cycle C

and distinct edges e1,e2,e3,e4,e5 ∈ C such that ei ∈ Ti .

or

Find a counterexample.
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Is there always an eOPD?

A

C

B

D

A

B

C D C D C D C D
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Hamiltonian path

A hamiltonian path in G(V ,E) is a subgraph of G(V ,E) which
is isomorphic to P|V |.
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Hamiltonian path

A hamiltonian path connecting x and y is a hamiltonian path P
such that x and y have degree 1 in P.

A graph G(V ,E) is hamiltonian-connected if for each pair x , y
of distinct vertices in V there exists a hamiltonian path
connecting x and y .
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4-connected triangulations

Theorem (Thomassen, 1983)

Each triangulation without separating triangles is
hamiltonian-connected.
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3-connected triangulations

Theorem

Let G be a 3-connected triangulation such that there is an edge
e which is contained in all separating triangles. Then G is
hamiltonian-connected.

Corollary

Let G be a 3-connected triangulation with exactly one
separating triangle. Then G is hamiltonian-connected.
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3-connected triangulations

Theorem

For any s ≥ 4 there exists a 3-connected triangulation with
exactly s separating triangles that is not hamiltonian-connected.
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Decomposition tree

Theorem

Let D be a tree with maximum degree 1. Then any triangulation
which has D as decomposition tree is hamiltonian-connected.

Theorem

Let D be a tree with maximum degree at least 4. Then D is the
decomposition tree of a 3-connected triangulation which is not
hamiltonian-connected.
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Separating triangles

Lemma

On up to 22 vertices all triangulations with at most 2 separating
triangles are all hamiltonian-connected.

Lemma

On up to 21 vertices all triangulations with at most 3 separating
triangles are all hamiltonian-connected.

G. Brinkmann, J. Souffriau, Nico Van Cleemput Hamiltonian cycles in plane triangulations



Introduction Hamiltonicity Hamiltonian-connectedness Definitions Results Computational results

Decomposition tree

Lemma

On up to 21 vertices all triangulations that have a
decomposition tree with maximum degree 2 are all
hamiltonian-connected.

Lemma

On up to 20 vertices all triangulations that have a
decomposition tree with maximum degree 3 are all
hamiltonian-connected.

G. Brinkmann, J. Souffriau, Nico Van Cleemput Hamiltonian cycles in plane triangulations



Introduction Hamiltonicity Hamiltonian-connectedness Definitions Results Computational results

Summary for hamiltonian-connectedness

∆ : 0 1 2 3 4 5 6 7 . . .
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hamiltonian-
connected
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