On the strongest form of a theorem of Whitney for hamiltonian cycles in plane triangulations

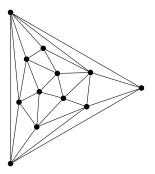
Gunnar Brinkmann Jasper Souffriau Nico Van Cleemput

Ghent University

G. Brinkmann, J. Souffriau, Nico Van Cleemput

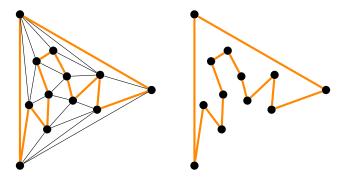
Triangulation

A triangulation is a plane graph in which each face is a triangle.



Hamiltonian cycle

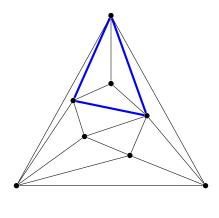
A hamiltonian cycle in G(V, E) is a subgraph of G(V, E) which is isomorphic to $C_{|V|}$.



A graph is hamiltonian if it contains a hamiltonian cycle.

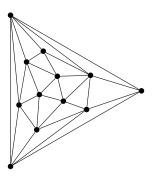
Separating triangles

A separating triangle *S* in a triangulation *T* is a subgraph of *T* such that *S* is isomorphic to C_3 and T - S has two components.



4-connected triangulations

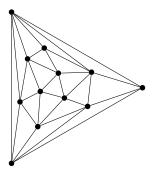
A triangulation is 4-connected if and only if it contains no separating triangles.



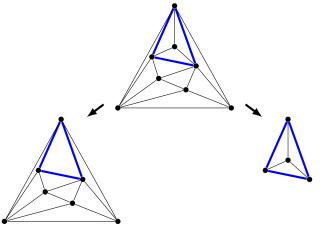
Whitney

Theorem (Whitney, 1931)

Each triangulation without separating triangles is hamiltonian.



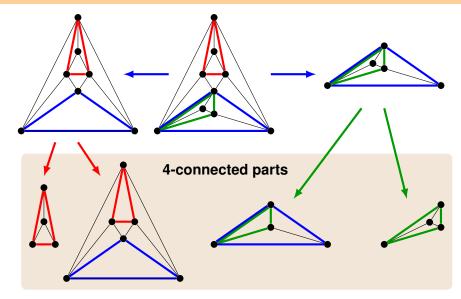
Splitting triangulations



G. Brinkmann, J. Souffriau, Nico Van Cleemput Hami

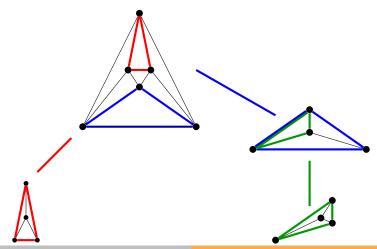
Hamiltonian cycles in plane triangulations

Recursively splitting triangulations



Decomposition tree

Vertices: 4-connected parts Edges: separating triangles



G. Brinkmann, J. Souffriau, Nico Van Cleemput

Hamiltonian cycles in plane triangulations

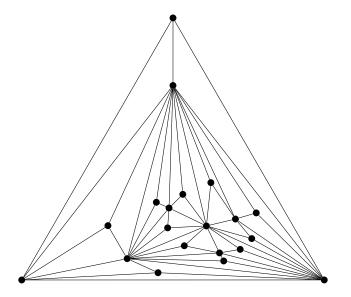
Jackson and Yu

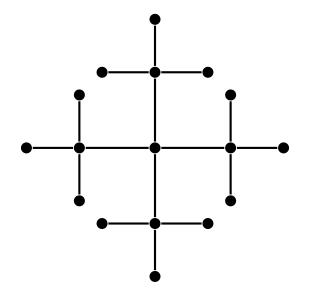
Theorem (Jackson and Yu, 2002)

A triangulation with a decomposition tree with maximum degree 3 is hamiltonian.

Jackson and Yu

There exists a non-hamiltonian triangulation with a decomposition tree with maximum degree 4.



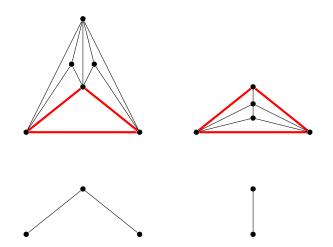


Question

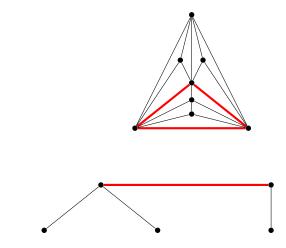
Can the result of Jackson and Yu be improved?

Which trees can arise as decomposition trees of non-hamiltonian triangulations?

Subdividing a face with a graph



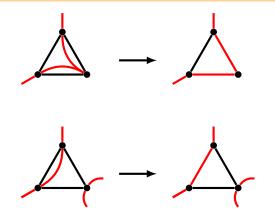
Subdividing a face with a graph



Subdividing a non-hamiltonian triangulation

Lemma

When a non-hamiltonian triangulation is subdivided, then the resulting graph is also non-hamiltonian.



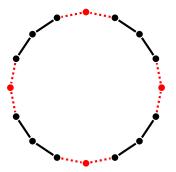
Toughness

A graph is 1-tough if it cannot be split into *k* components by removing less than *k* vertices.

G. Brinkmann, J. Souffriau, Nico Van Cleemput Hamiltonian cycles in plane triangulations

Toughness

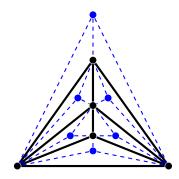
A hamiltonian graph is 1-tough.



Creating a non-hamiltonian plane graph

Lemma

When in a plane graph with more faces than vertices each face is subdivided, then the resulting plane graph is non-hamiltonian.



The subdivided graph is not 1-tough.

G. Brinkmann, J. Souffriau, Nico Van Cleemput Han

Hamiltonian cycles in plane triangulations

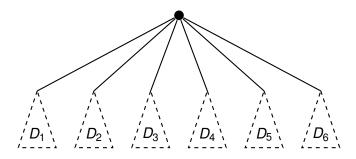
Decomposition trees with $\Delta \ge 6$

Theorem

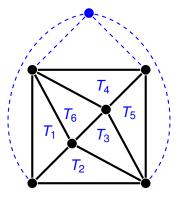
For each tree D with $\Delta(D) \ge 6$, there exists a non-hamiltonian triangulation T, such that D is the decomposition tree of T.

Constructive proof.

Assume $\Delta(D) = 6$.



Choose triangulation T_i with decomposition tree D_i ($1 \le i \le 6$)



A non-hamiltonian triangulation with *D* as decomposition tree.

 $\Delta(D) > 6$

$\Delta: 0 1 2 3 4 5 6 7 \cdots$

G. Brinkmann, J. Souffriau, Nico Van Cleemput Hamiltonian cycles in plane triangulations

$\Delta: 0 1 2 3 4 5 6 7 \cdots$

Not the decomposition tree of non-hamiltonian triangulation

$\Delta : 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ \cdots$

Not the decomposition tree of non-hamiltonian triangulation

Possibly the decomposition tree of non-hamiltonian triangulation

$\Delta: 0 1 2 3 4 5 6 7 \cdots$

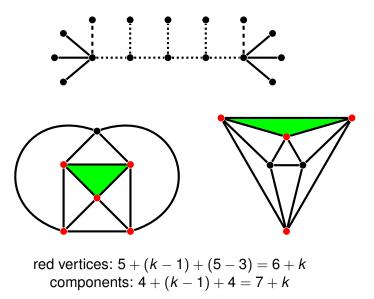
Not the decomposition tree of non-hamiltonian triangulation

Possibly the decomposition tree of non-hamiltonian triangulation

Multiple degrees > 3

Theorem

For each tree D with at least two vertices with degree > 3, there exists a non-hamiltonian triangulation T, such that D is the decomposition tree of T.



Remaining cases: trees with one vertex of degree 4 or 5 and all other degrees at most 3.

One vertex of degree 4 or 5

Theorem

Let T be a triangulation with decomposition tree D with only one vertex of degree 4 or 5 and all other vertices of degree at most 3. Then T is 1-tough.

Simplifying things

Theorem

For each $k \ge 4$. Let D be a tree with one vertex of degree k and all other vertices of degree ≤ 3 . There exists a non-hamiltonian triangulation with D as decomposition tree if and only if there exists a non-hamiltonian triangulation with $K_{1,k}$ as decomposition tree.

G. Brinkmann, J. Souffriau, Nico Van Cleemput Hamiltonian cycles in plane triangulations

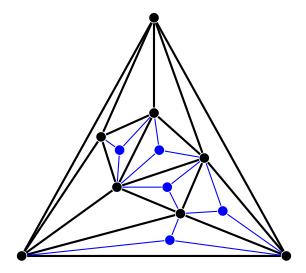
Simplifying things (more)

Theorem

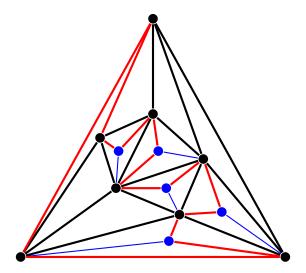
For each $k \ge 4$. If there exists a non-hamiltonian triangulation with $K_{1,k}$ as decomposition tree, then there exists a non-hamiltonian triangulation with $K_{1,k}$ as decomposition tree such that the leaves correspond to K_4 's.

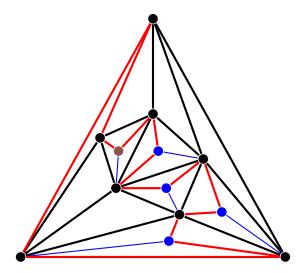
Specialised search

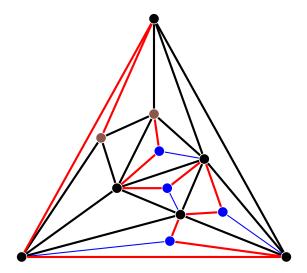
Specialised programs to search for non-hamiltonian triangulations with $K_{1,4}$ or $K_{1,5}$ as decomposition tree.

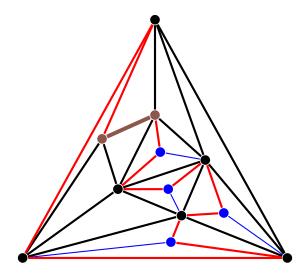


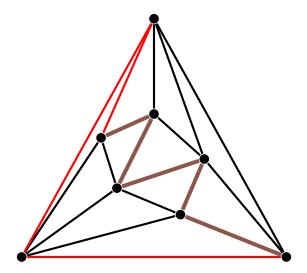
G. Brinkmann, J. Souffriau, Nico Van Cleemput Hamiltonian c

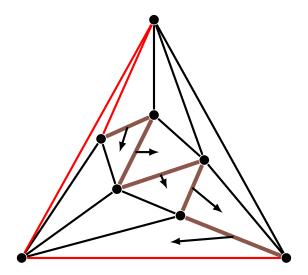










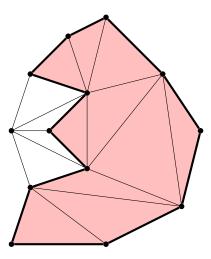


Outerplanar disc of a triangulation T vertex induced subgraph of T which is an outerplanar triangulation of the disc with at least 3 vertices

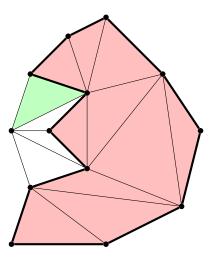
Leaf of an outerplanar disc *O* vertex which only has two neighbours in *O*, together with those two neighbours

Extended outerplanar disc of a triangulation T outerplanar disc of T together with a triangle t not belonging to O, but sharing an edge with O

Leaf of an extended outerplanar disc OLeaf of the outerplanar disc which contains a vertex of degree 2 in O which does not belong to t

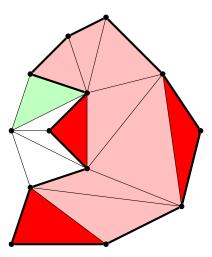






G. Brinkmann, J. Souffriau, Nico Van Cleemput

Hamiltonian cycles in plane triangulations



Theorem

Let T be a 4-connected triangulation. Let $t_1, t_2, ..., t_k$ (with $k \ge 4$) be distinct triangles in T such that there is an extended outerplanar disc O with extension t_1 containing $t_2, ..., t_{k-2}$ as leaves and with t_{k-1}, t_k not in O. Then there exists a hamiltonian cycle C of T and edges $e_1 \in E(t_1), ..., e_k \in E(t_k)$ that are pairwise distinct and contained in E(C).

Corollary

Let T be a 4-connected plane triangulation, O an extended outerplanar disc and t_1, t_2, t_3, t_4 distinct triangles in G. If at least two of t_1, t_2, t_3, t_4 are contained in O then there exists a hamiltonian cycle C of T and edges $e_1 \in E(t_1), \ldots, e_4 \in E(t_4)$ that are pairwise distinct and contained in E(C).

Corollary

Let T be a 4-connected plane triangulation. Let t_1 , t_2 , t_3 , t_4 be distinct triangles in G such that (at least) two of them share a vertex. Then there exists a hamiltonian cycle C of T and edges

 $e_1 \in E(t_1), \ldots, e_4 \in E(t_4)$ that are pairwise distinct and contained in E(C).

Results

All triangulations on at most 31 vertices with $K_{1,4}$ as decomposition tree are hamiltonian.

All triangulations on at most 27 vertices with $K_{1,5}$ as decomposition tree are hamiltonian.

Results

V	F	4-connected triangulations
6	8	1
7	10	1
8	12	2
9	14	4
10	16	10
11	18	25
12	20	87
13	22	313
14	24	1357
15	26	6244
16	28	30 926
17	30	158 428
18	32	836 749
19	34	4 504 607
20	36	24 649 284
21	38	136 610 879
22	40	765 598 927
23	42	4 332 047 595
24	44	24 724 362 117
25	46	142 205 424 580
26	48	823 687 567 019
27	50	4 801 749 063 379

G. Brinkmann, J. Souffriau, Nico Van Cleemput

... and now?

Prove that for each 4-tuple of vertex-disjoint triangles in a 4-connected triangulation there exists a hamiltonian cycle that shares an edge with each of the triangles.

or

Find a counterexample.

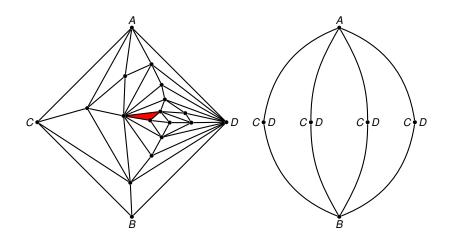
... and now?

Prove that for each 5-tuple of triangles T_1 , T_2 , T_3 , T_4 , T_5 in a 4-connected triangulation there exists a hamiltonian cycle *C* and distinct edges e_1 , e_2 , e_3 , e_4 , $e_5 \in C$ such that $e_i \in T_i$.

or

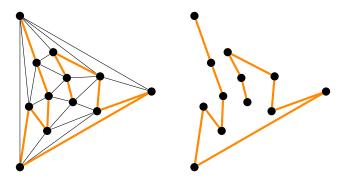
Find a counterexample.

Is there always an eOPD?



Hamiltonian path

A hamiltonian path in G(V, E) is a subgraph of G(V, E) which is isomorphic to $P_{|V|}$.



Hamiltonian path

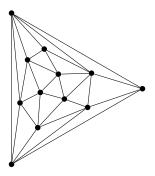
A hamiltonian path connecting x and y is a hamiltonian path P such that x and y have degree 1 in P.

A graph G(V, E) is hamiltonian-connected if for each pair x, y of distinct vertices in V there exists a hamiltonian path connecting x and y.

4-connected triangulations

Theorem (Thomassen, 1983)

Each triangulation without separating triangles is hamiltonian-connected.



3-connected triangulations

Theorem

Let G be a 3-connected triangulation such that there is an edge e which is contained in all separating triangles. Then G is hamiltonian-connected.

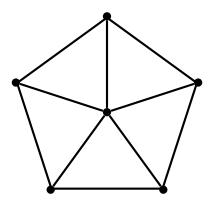
Corollary

Let G be a 3-connected triangulation with exactly one separating triangle. Then G is hamiltonian-connected.

3-connected triangulations

Theorem

For any $s \ge 4$ there exists a 3-connected triangulation with exactly s separating triangles that is not hamiltonian-connected.



Decomposition tree

Theorem

Let D be a tree with maximum degree 1. Then any triangulation which has D as decomposition tree is hamiltonian-connected.

Theorem

Let D be a tree with maximum degree at least 4. Then D is the decomposition tree of a 3-connected triangulation which is not hamiltonian-connected.

Separating triangles

Lemma

On up to 22 vertices all triangulations with at most 2 separating triangles are all hamiltonian-connected.

Lemma

On up to 21 vertices all triangulations with at most 3 separating triangles are all hamiltonian-connected.

Decomposition tree

Lemma

On up to 21 vertices all triangulations that have a decomposition tree with maximum degree 2 are all hamiltonian-connected.

Lemma

On up to 20 vertices all triangulations that have a decomposition tree with maximum degree 3 are all hamiltonian-connected.

$\Delta: 0 1 2 3 4 5 6 7 \cdots$

$\Delta: 0 1 2 3 4 5 6 7 \cdots$

Always hamiltonianconnected

$\Delta : 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ \cdots$

Always hamiltonianconnected

Possibly not hamiltonian-connected

Δ: 0 1 2 3 4 5 6 7 ···· Always hamiltonianconnected Possibly not hamiltonian-connected