4-connected polyhedra have at least a linear number of hamiltonian cycles

Gunnar Brinkmann Nico Van Cleemput

Combinatorial Algorithms and Algorithmic Graph Theory Department of Applied Mathematics, Computer Science and Statistics Ghent University

- 1 Introduction Definitions Hamiltonian cycles Counting base
- 2 4-connected polyhedra Counting base Linear number
- 3 Polyhedra with few 3-cuts
- 4 Summary

Hamiltonian cycles

A hamiltonian cycle is a spanning cycle.

Polyhedra and triangulations

- Polyhedra are 3-connected plane graphs
- A triangulation is a polyhedron with only triangular faces

Edges in polyhedra on *n* vertices

More edges suggests: more likely to be hamiltonian!

90 years of theorems

Triangulations		Polyhedra
4-conn. \Rightarrow hamiltonian Whitney (1931)	\leftarrow 25 years \rightarrow	4-conn. \Rightarrow hamiltonian Tutte (1956)
at most three 3-cuts ⇒ hamiltonian Jackson, Yu (2002)	\leftarrow 17 years \rightarrow	at most three 3-cuts ⇒ hamiltonian Brinkmann, Zamfirescu (2019)
six 3-cuts can be non-hamiltonian		six 3-cuts can be non-hamiltonian
four or five 3-cuts: unknown, but 1-tough		four or five 3-cuts: unknown, but 1-tough

Number of hamiltonian cycles

4-connected triangulations	4-connected polyhedra
2 1 hamiltonian cycle Whitney (1931)	2 1 hamiltonian cycle Tutte (1956)
$\geq \frac{n}{\log n}$ hamiltonian cycles Hakimi, Schmeichel, Thomassen (1979)	
	≥ 6 hamiltonian cycles Thomassen (1983)
$\geq rac{12}{5}(n-2)$ hamiltonian cycles Brinkmann, Souffriau, VC (2018) $\geq rac{161}{60}(n-2)$ hamiltonian cycles Brinkmann, Cuvelier, VC (2018)	

Number of hamiltonian cycles

- Up to 17 vertices there are 4-connected polyhedra with fewer hamiltonian cycles than the double wheel
- For 18 vertices or more the double wheel appears to be the polyhedron with the fewest number of hamiltonian cycles

Hakimi, Schmeichel, Thomassen (1979)

Using a result of Whitney (1931):

Lemma

Each zigzag in a 4-connected triangulation can be extended to a hamiltonian cycle.

9

Hakimi, Schmeichel, Thomassen (1979)

There is a linear number of such zigzags, but...

... a single hamiltonian cycle can contain a linear number of these zigzags, giving in total a constant number of hamiltonian cycles.

Hakimi, Schmeichel, Thomassen (1979)

A hamiltonian cycle with k disjoint zigzags guarantees 2^k hamiltonian cycles by '*switching*'.

The main contribution of the 2018-paper:

counting differently via counting bases

- (i) saturated
- (ii) closed
- (iii) independent

- (i) saturated
- (ii) closed
- (iii) independent

- (i) saturated
- (ii) closed
- (iii) independent

- (i) saturated
- (ii) closed
- (iii) independent

Very informally:

The counting base lemma (weak variant)

If one has a counting base with a set *S* of switching subgraphs so that each switching subgraph overlaps with at most *c* others, then there are at least $\frac{|S|}{c}$ hamiltonian cycles.

Switching subgraphs for triangulations

Counting base for 4-connected polyhedra

Problem: polyhedra can locally look very different.

Switching subgraphs for 4-connected polyhedra

Counting base for 4-connected polyhedra

The conditions **closed** and **independent** are easily verified, so only **saturation** needs to be examined.

The tool to solve this is:

Lemma (Jackson, Yu, 2002)

Let (G, F) be a circuit graph, r, z be vertices of G and $e \in E(F)$. Then G contains an F-Tutte cycle X through e, r and z.

Circuit graph: *G* plane, 2-connected, *F* facial cycle, for each 2-cut each component contains elements from F

F-Tutte cycle: cycle C, so that bridges contain at most 3 endpoints on C and at most 2 if it contains an edge of F.

Counting base for 4-connected polyhedra

Unfortunately...

- for each such switching subgraph there are 4-connected polyhedra not containing it
- for each pair of those switching subgraphs there are 4-connected polyhedra containing only a small constant number of them

but...

Theorem

Each 4-connected polyhedron has a linear number of the three switching subgraphs below.

So, applying the counting base lemma:

Theorem

4-connected polyhedra have at least a linear number of hamiltonian cycles.

Let f_i denote the number of faces of size i.

Lemma

$$f_3 \geq 8 + \sum_{i>4} (i-4)f_i$$

Assign the value 0 to angles of triangles and quadrangles
Assign the value ⁱ⁻⁴/_i to each angle of an *i*-gon with *i* > 4

Lemma

$$f_3 \ge 8 + \sum_{i>4} (i-4)f_i$$

Define a(v) as the sum of all angle values around v.

Lemma

$$f_3 \ge 8 + \sum_{i>4} (i-4)f_i$$

Define a(v) as the sum of all angle values around v.

Lemma

$$f_3 \ge 8 + \sum_{i>4} (i-4)f_i$$

Define a(v) as the sum of all angle values around v.

Let S denote the set of switching subgraphs. Let S_H denote the set of hourglasses.

Lemma

$$|\mathcal{S}| \ge |\mathcal{S}_{\mathcal{H}}| \ge 24 + 3\sum_{v \in V} a(v) - |V|$$

Count the switching subgraphs in a special way:

Define w(v) as the sum of all values at the vertex v.

$$\sum_{\mathbf{v}\in\mathbf{V}}\mathbf{w}(\mathbf{v})=|\mathcal{S}|$$

There are 4-connected polyhedra for which:

- the minimum of a over all vertices is 0, and...
- the minimum of w over all vertices is 0.

Lemma

Let G = (V, E) be a plane graph with minimum degree ≥ 4 . Then for each $v \in V$ we have

$$a(v)+w(v)\geq \frac{2}{5}$$

so

$$\sum_{v\in V} a(v) + |\mathcal{S}| \geq \frac{2}{5}|V|$$

Lemma

$$|\mathcal{S}| \geq \frac{1}{20}|V| + 6$$

Proof: Set
$$A(V) = \sum_{v \in V} a(v)$$
.
We have two lower bounds for $|S|$:

$$|\mathcal{S}| \ge 24 + 3\mathcal{A}(V) - |V|$$
 $|\mathcal{S}| \ge \frac{2}{5}|V| - \mathcal{A}(V)$

Lemma

$$|\mathcal{S}| \geq \frac{1}{20}|V| + 6$$

Lemma

$$|\mathcal{S}| \geq \frac{1}{20}|V| + 6$$

Lemma

$$|\mathcal{S}| \geq \frac{1}{20}|V| + 6$$

Theorem

Each 4-connected polyhedron has a linear number of the three switching subgraphs below.

So, applying the counting base lemma:

Theorem

4-connected polyhedra have at least a linear number of hamiltonian cycles.

Few 3-cuts

Theorem

Let c > 0. Polyhedra with at most one 3-cut and at least $(2 + \frac{2}{33} + c)|V|$ edges have at least a linear number of hamiltonian cycles.

Edges in polyhedra on *n* vertices

Summary

Theorem

4-connected polyhedra have at least a linear number of hamiltonian cycles.

Theorem

Let c > 0. Polyhedra with at most one 3-cut and at least $(2 + \frac{2}{33} + c)|V|$ edges have at least a linear number of hamiltonian cycles.

