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Hamiltonian cycles

A hamiltonian cycle is a spanning cycle.
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Polyhedra and triangulations

Polyhedra are 3-connected plane graphs
A triangulation is a polyhedron with only triangular faces
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Edges in polyhedra on n vertices

0 3
2 n 2n 3n − 6

polyhedra
4-conn. polyhedra

triangulations

More edges suggests: more likely to be hamiltonian!
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90 years of theorems

Triangulations Polyhedra

4-conn. ⇒ hamiltonian ←25 years→ 4-conn. ⇒ hamiltonian
Whitney (1931) Tutte (1956)

at most three 3-cuts⇒
hamiltonian ←17 years→ at most three 3-cuts⇒

hamiltonian
Jackson, Yu (2002) Brinkmann, Zamfirescu (2019)

six 3-cuts can be
non-hamiltonian

six 3-cuts can be
non-hamiltonian

four or five 3-cuts:
unknown, but 1-tough

four or five 3-cuts:
unknown, but 1-tough
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Number of hamiltonian cycles

4-connected 4-connected
triangulations polyhedra

≥ 1 hamiltonian cycle ≥ 1 hamiltonian cycle
Whitney (1931) Tutte (1956)

≥ n
log n hamiltonian cycles

Hakimi, Schmeichel, Thomassen (1979)

≥ 6 hamiltonian cycles
Thomassen (1983)

≥ 12
5 (n − 2) hamiltonian cycles
Brinkmann, Souffriau, VC (2018)

≥ 161
60 (n − 2) hamiltonian cycles

Brinkmann, Cuvelier, VC (2018)
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Number of hamiltonian cycles

Up to 17 vertices there are 4-connected polyhedra with fewer
hamiltonian cycles than the double wheel
For 18 vertices or more the double wheel appears to be the
polyhedron with the fewest number of hamiltonian cycles

2(n − 2)(n − 4) hamiltonian cycles
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Hakimi, Schmeichel, Thomassen (1979)

Using a result of Whitney (1931):

Lemma

Each zigzag in a 4-connected triangulation can be extended to a
hamiltonian cycle.

Gunnar Brinkmann, Nico Van Cleemput 4-connected polyhedra have a linear number of hamiltonian cycles 9



Introduction 4-connected polyhedra Few 3-cuts Summary Definitions Hamiltonian cycles Counting base

Hakimi, Schmeichel, Thomassen (1979)

There is a linear number of such zigzags, but. . .

. . . a single hamiltonian cycle can contain a linear number of these
zigzags, giving in total a constant number of hamiltonian cycles.
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Hakimi, Schmeichel, Thomassen (1979)

A hamiltonian cycle with k disjoint zigzags guarantees 2k hamiltonian
cycles by ‘switching’.

This explains the
·

log n
in the formula.
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Counting bases

The main contribution of the 2018-paper:

counting differently via counting bases
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Counting bases

Definition

Let G be a graph and let C be a collection of hamiltonian cycles of G.
The pair (S, r), where S ⊂ 2E(G) and r is a function r : S → 2E(G), is
called a counting base for G and C if the pair (S, r) has the following
properties:

(i) for all S ∈ S, there is a hamiltonian cycle C ∈ C saturating S.
(ii) for all S ∈ S, r(S) ⊆ E(G) (not necessarily in S) so that S 6⊂ r(S)

and for each hamiltonian cycle C ∈ C saturating S we have that
z(C,S) = (C \ S) ∪ r(S) is a hamiltonian cycle in C.

(iii) for all S1 6= S2, S1,S2 ∈ S and C saturating S1 and S2, we have
that z(C,S1) 6= z(C,S2).

Don’t read this slide!
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Counting bases

A counting base is a set of subgraphs (switching subgraphs) together
with a function (switching function) satisfying 3 conditions:

(i) saturated
(ii) closed
(iii) independent
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Counting bases

A counting base is a set of subgraphs (switching subgraphs) together
with a function (switching function) satisfying 3 conditions:

(i) saturated
(ii) closed
(iii) independent

6=
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Counting bases

Very informally:

The counting base lemma (weak variant)

If one has a counting base with a set S of switching subgraphs so
that each switching subgraph overlaps with at most c others, then

there are at least
|S|
c

hamiltonian cycles.
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Switching subgraphs for triangulations
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Counting base for 4-connected polyhedra

Problem: polyhedra can locally look very different.
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Switching subgraphs for 4-connected polyhedra
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Counting base for 4-connected polyhedra

The conditions closed and independent are easily verified, so only
saturation needs to be examined.

The tool to solve this is:

Lemma (Jackson, Yu, 2002)

Let (G,F ) be a circuit graph, r , z be vertices of G and e ∈ E(F ).
Then G contains an F-Tutte cycle X through e, r and z.

Circuit graph: G plane, 2-connected, F facial cycle, for each 2-cut each component
contains elements from F

F-Tutte cycle: cycle C, so that bridges contain at most 3 endpoints on C and at most 2
if it contains an edge of F .
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Counting base for 4-connected polyhedra

Unfortunately. . .

for each such switching subgraph there are 4-connected
polyhedra not containing it
for each pair of those switching subgraphs there are 4-connected
polyhedra containing only a small constant number of them

but. . .
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Theorem

Each 4-connected polyhedron has a linear number of the three
switching subgraphs below.

So, applying the counting base lemma:

Theorem

4-connected polyhedra have at least a linear number of hamiltonian
cycles.
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Linear number of switching subgraphs

Let fi denote the number of faces of size i .

Lemma

f3 ≥ 8 +
∑
i>4

(i − 4)fi
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Linear number of switching subgraphs
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Linear number of switching subgraphs

Lemma

f3 ≥ 8 +
∑
i>4

(i − 4)fi

Assign the value 0 to angles of triangles and quadrangles

Assign the value
i − 4

i
to each angle of an i-gon with i > 4
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Linear number of switching subgraphs

Lemma

f3 ≥ 8 +
∑
i>4

(i − 4)fi

Define a(v) as the sum of all angle values around v .
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Linear number of switching subgraphs

Lemma

f3 ≥ 8 +
∑
i>4

(i − 4)fi

Define a(v) as the sum of all angle values around v .
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a(v) = 1
5 + 2

6 = 8
15
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Linear number of switching subgraphs

Lemma

f3 ≥ 8 +
∑
i>4

(i − 4)fi

Define a(v) as the sum of all angle values around v .

⇒
∑

v∈V
a(v) =

∑
i>4

(i − 4)fi
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Linear number of switching subgraphs

Lemma

A polyhedron has at least 3f3 − |V | hourglasses.

Let S denote the set of switching subgraphs.
Let SH denote the set of hourglasses.

Lemma

|S| ≥ |SH | ≥ 24 + 3
∑

v∈V
a(v)− |V |
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Linear number of switching subgraphs
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Linear number of switching subgraphs

Count the switching subgraphs in a special way:

1 1
2

1
2

1
2

1
2

1

Define w(v) as the sum of all values at the vertex v .

∑
v∈V

w(v) = |S|
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Linear number of switching subgraphs

There are 4-connected polyhedra for which:
the minimum of a over all vertices is 0, and. . .
the minimum of w over all vertices is 0.
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Linear number of switching subgraphs

Lemma

Let G = (V ,E) be a plane graph with minimum degree ≥ 4.
Then for each v ∈ V we have

a(v) + w(v) ≥ 2
5

so ∑
v∈V

a(v) + |S| ≥ 2
5
|V |
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Linear number of switching subgraphs

Lemma

For 4-connected polyhedra we have

|S| ≥ 1
20
|V |+ 6

Proof: Set A(V ) =
∑

v∈V
a(v).

We have two lower bounds for |S|:

|S| ≥ 24 + 3A(V )− |V |

|S| ≥ 2
5
|V | − A(V )
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Linear number of switching subgraphs

Lemma

For 4-connected polyhedra we have

|S| ≥ 1
20
|V |+ 6

24 + 3A(v)− |V |

2
5 |V | − A(V )

A(V )
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Linear number of switching subgraphs

Lemma

For 4-connected polyhedra we have

|S| ≥ 1
20
|V |+ 6

24 + 3A(v)− |V |

2
5 |V | − A(V )

A(V )

Gunnar Brinkmann, Nico Van Cleemput 4-connected polyhedra have a linear number of hamiltonian cycles 33



Introduction 4-connected polyhedra Few 3-cuts Summary Counting base Linear number

Linear number of switching subgraphs

Lemma

For 4-connected polyhedra we have

|S| ≥ 1
20
|V |+ 6

24 + 3A(v)− |V |

2
5 |V | − A(V )

A(V )

1
20 |V |+ 6
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Theorem

Each 4-connected polyhedron has a linear number of the three
switching subgraphs below.

So, applying the counting base lemma:

Theorem

4-connected polyhedra have at least a linear number of hamiltonian
cycles.
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Few 3-cuts

Theorem

Let c > 0. Polyhedra with at most one 3-cut and at least
(2 + 2

33 + c)|V | edges have at least a linear number of hamiltonian
cycles.
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Edges in polyhedra on n vertices

0 3
2 n 2n 3n − 6

polyhedra

4-conn. polyhedra
polyhedra one 3-cut
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Summary

Theorem

4-connected polyhedra have at least a linear number of hamiltonian
cycles.

Theorem

Let c > 0. Polyhedra with at most one 3-cut and at least
(2 + 2

33 + c)|V | edges have at least a linear number of hamiltonian
cycles.
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